Identities involving elementary symmetric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 33 L251
(http://iopscience.iop.org/0305-4470/33/29/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Identities involving elementary symmetric functions

S Chaturvedi \dagger and V Gupta \ddagger
\dagger School of Physics, University of Hyderabad, Hyderabad 500 046, India
\ddagger Departamento de Física Aplicado, Centro de Investigación y de Estudios Avanzados del IPN,
Unidad Mérida, AP 73, Cordemex 97310, Mérida, Yucatan, Mexico
E-mail: scsp@uohyd.ernet.in and virendra@aruna.cieamer.conacyt.mx

Received 17 April 2000

Abstract

A systematic procedure for generating certain identities involving elementary symmetric functions is proposed. These identities, as particular cases, lead to a hierarchy of identities for q-binomial coefficients.

Ever since the advent of Calogero-Sutherland models [1-4] there has been a considerable interest in finding homogeneous symmetric polynomials $P_{k}(x) ; x \equiv\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ of degree k which satisfy the generalized Laplace equation

$$
\begin{equation*}
\left[\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2}{\alpha} \sum_{i<j} \frac{1}{\left(x_{i}-x_{j}\right)}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right)\right] P_{k}(x)=0 . \tag{1}
\end{equation*}
$$

Since one is seeking solutions to (1) which are symmetric functions of ($x_{1}, x_{2}, \ldots, x_{N}$) it appears natural to change variables from $\left(x_{1}, x_{2}, \ldots\right)$ to a set of variables which are symmetric functions of $\left(x_{1}, x_{2}, \ldots\right)$ and rewrite the generalized Laplace equation in terms of these variables. Two sets of such variables that have been considered in the literature [5, 6] are

- power sums:

$$
\begin{equation*}
p_{r}(x)=\sum_{i} x_{i}^{r} \quad r=1, \ldots, N \tag{2}
\end{equation*}
$$

- elementary symmetric functions:

$$
\begin{equation*}
e_{r}(x)=\sum_{i_{1}<i_{2} \cdots<i_{r}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}} \quad i_{1}, \ldots, i_{r}=1, \ldots, N \quad r=1, \ldots, N . \tag{3}
\end{equation*}
$$

(Here, for symmetric functions, we follow the nomenclature and notation of [7].) Explicit expressions for the generalized Laplace equation in terms of these variables may be found in [5] and [6] respectively. The next step consists in finding polynomial solutions of the equation thus obtained. (It may be noted here that a more efficient way of constructing the symmetric polynomial solutions of (1) based on expanding $P_{k}(x)$ in terms of Jack polynomials [8] may be found in [9].)

In changing variables from $\left(x_{1}, \ldots, x_{N}\right)$ to $\left(e_{1}(x), \ldots, e_{N}(x)\right)$ in the generalized Laplace equation, in the intermediate stages, one needs to express the symmetric function

$$
\begin{equation*}
\sum_{i} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) \tag{4}
\end{equation*}
$$

in terms of $e_{r}(x)$. Here $e_{p}^{(i)}(x)$ denotes the p th elementary symmetric function formed from $\left(x_{1}, \ldots, x_{N}\right)$ omitting x_{i}. The purpose of this letter is to provide a derivation of the expression of the symmetric function in (4) in terms of the elementary symmetric functions in the full set of variables $\left(x_{1}, \ldots, x_{N}\right)$. The procedure adopted for deriving this result permits easy extension to symmetric functions such as

$$
\begin{equation*}
\sum_{i=1}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) e_{r-1}^{(i)}(x) \tag{5}
\end{equation*}
$$

and so on. Further, on setting $x_{1}=1, x_{2}=q, \ldots, x_{N}=q^{N-1}$, one is led to a series of interesting identities for q-binomial coefficients.

To obtain the desired results, it proves convenient to work with the generating function for the elementary symmetric functions

$$
\begin{align*}
E(x, t) & =\sum_{r=0}^{N} t^{r} e_{r}(x) \tag{6}\\
& =\prod_{i=1}^{N}\left(1+x_{i} t\right) \tag{7}
\end{align*}
$$

From the product structure of $E(x, t)$ it follows that

$$
\begin{equation*}
e_{p}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{l=0}^{p} e_{l}\left(x_{1}, x_{2}, \ldots, x_{i}\right) e_{p-l}\left(x_{i+1}, \ldots, x_{N}\right) \tag{8}
\end{equation*}
$$

Differentiating $\log E(x, t)$ with respect to t gives

$$
\begin{equation*}
\frac{\partial}{\partial t} \log E(x, t)=\sum_{i=1}^{N} \frac{x_{i}}{\left(1+x_{i} t\right)} \tag{9}
\end{equation*}
$$

Further, differentiating $\log E(x, t)$ with respect to x_{i} one obtains

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}} \log E(x, t)=\frac{t}{\left(1+x_{i} t\right)} \tag{10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\prod_{\alpha=1}^{M}\left[\frac{\partial}{\partial x_{i}} \log E\left(x, t_{\alpha}\right)\right]=\left(\prod_{\alpha=1}^{M} t_{\alpha}\right)\left(\prod_{\alpha=1}^{M} \frac{1}{1+x_{i} t_{\alpha}}\right) . \tag{11}
\end{equation*}
$$

Our aim now is to express the rhs of (11) in terms of derivatives of $\log E(x, t)$ with respect to t. To this end, we notice that the second product on the rhs of (11) can be expressed as follows:

$$
\begin{equation*}
\left(\prod_{\alpha=1}^{M} \frac{1}{1+x_{i} t_{\alpha}}\right)=1+\sum_{\alpha}^{M} f_{\alpha}(t) \frac{x_{i}}{1+x_{i} t_{\alpha}} \tag{12}
\end{equation*}
$$

where $f_{\alpha}(t)$ satisfy the following set of linear equations:

$$
\begin{align*}
& \sum_{\alpha} f_{\alpha}=-e_{1}(t) \\
& \sum_{\alpha}^{\alpha} f_{\alpha} e_{1}^{(\alpha)}(t)=-e_{2}(t) \tag{13}\\
& \sum_{\alpha} f_{\alpha} e_{2}^{(\alpha)}(t)=-e_{3}(t) \\
& \vdots \\
& \sum_{\alpha} f_{\alpha} e_{M-1}^{(\alpha)}=-e_{M}(t) .
\end{align*}
$$

The solution of this set of linear equations turns out to be remarkably simple:

$$
\begin{equation*}
f_{\alpha}(t)=\left(-t_{\alpha}\right)^{M} \prod_{\beta \neq \alpha} \frac{1}{\left(t_{\beta}-t_{\alpha}\right)} \tag{14}
\end{equation*}
$$

Using (12) in (11), summing over i, and using (9) we obtain

$$
\begin{equation*}
\sum_{i} \prod_{\alpha=1}^{M}\left[\frac{\partial}{\partial x_{i}} \log E\left(x, t_{\alpha}\right)\right]=\left(\prod_{\alpha=1}^{M} t_{\alpha}\right)\left[N+\sum_{\alpha=1}^{M} f_{\alpha} \frac{\partial}{\partial t_{\alpha}} \log E\left(x, t_{\alpha}\right)\right] \tag{15}
\end{equation*}
$$

i.e.
$\sum_{i} \prod_{\alpha=1}^{M}\left[\frac{\partial}{\partial x_{i}} E\left(x, t_{\alpha}\right)\right]=N \prod_{\alpha=1}^{M} t_{\alpha} E\left(x, t_{\alpha}\right)+\left(\prod_{\alpha=1}^{M} t_{\alpha}\right) \sum_{\alpha=1}^{M} f_{\alpha} \frac{\partial}{\partial t_{\alpha}} \prod_{\beta=1}^{M} E\left(x, t_{\beta}\right)$
where the f are given by (14). This relation is a rich source of a hierarchy of identities involving elementary symmetric functions and hence that for q-binomial and binomial coefficients as can be seen from the following illustrative examples.

Consider first the simplest of the hierarchy of identities implied by (16) obtained by setting $\alpha=1$. In this case, (16) yields

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} E(x, t)=N t E(x, t)-t^{2} \frac{\partial}{\partial t} E(x, t) . \tag{17}
\end{equation*}
$$

On substituting for $E(x, t)$ from (6) and equating like powers of t on both sides one obtains

$$
\begin{equation*}
\sum_{i=1}^{N} e_{p-1}^{(i)}(x)=(N-p+1) e_{p-1}(x) \tag{18}
\end{equation*}
$$

Now, from (8) it follows that

$$
\begin{equation*}
e_{p-1}^{(i)}(x)=\sum_{l=1}^{p} e_{l-1}\left(x_{1}, x_{2}, \ldots, x_{i-1}\right) e_{p-l}\left(x_{i+1}, \ldots, x_{N}\right) \tag{19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{i=1}^{N} e_{p-1}^{(i)}(x)=\sum_{l=1}^{p} \sum_{i=1}^{N} e_{l-1}\left(x_{1}, x_{2}, \ldots, x_{i-1}\right) e_{p-l}\left(x_{i+1}, \ldots, x_{N}\right) \tag{20}
\end{equation*}
$$

Using the fact that $e_{l}\left(x_{1}, \ldots, x_{i}\right)$ is nonzero only if $i \geqslant l$, we can rewrite (20), after some rearrangement, as

$$
\begin{equation*}
\sum_{i=1}^{N} e_{p-1}^{(i)}(x)=\sum_{i=1}^{N-p+1} \sum_{l=0}^{p-1} e_{l}\left(x_{1}, x_{2}, \ldots, x_{i+l-1}\right) e_{p-l-1}\left(x_{i+l+1}, \ldots, x_{N}\right) \tag{21}
\end{equation*}
$$

On using this result in (18) we obtain

$$
\begin{equation*}
\sum_{i=1}^{N-p+1} \sum_{l=0}^{p-1} e_{l}\left(x_{1}, x_{2}, \ldots, x_{i+l-1}\right) e_{p-l-1}\left(x_{i+l+1}, \ldots, x_{N}\right)=(N-p+1) e_{p-1}(x) . \tag{22}
\end{equation*}
$$

Setting $x_{1}=1, x_{2}=q, \ldots, x_{N}=q^{N-1}$ and using

$$
e_{p}\left(1, q, \ldots, q^{N-1}\right)=q^{p(p-1) / 2}\left[\begin{array}{l}
N \tag{23}\\
p
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
N \tag{24}\\
p
\end{array}\right] \equiv \frac{\left(1-q^{N}\right)\left(1-q^{N-1}\right) \cdots\left(1-q^{N-p+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{p}\right)}
$$

denotes the q-binomial coefficient [7,10], we obtain, on changing $p-1$ to p, the following q-binomial identity:

$$
\sum_{i=1}^{N-p} \sum_{l=0}^{p} q^{i l}\left[\begin{array}{c}
N-p-i+l \tag{25}\\
l
\end{array}\right]\left[\begin{array}{c}
i-1+p-l \\
p-l
\end{array}\right]=(N-p)\left[\begin{array}{l}
N \\
p
\end{array}\right] .
$$

This identity has a totally different structure as compared with that obtained from (8). For $N-p \geqslant i \geqslant 1$ (8) yields

$$
\sum_{l=0}^{i} q^{(i-l)(p-l)}\left[\begin{array}{c}
N-i \tag{26}\\
p-l
\end{array}\right]\left[\begin{array}{l}
i \\
l
\end{array}\right]=\left[\begin{array}{l}
N \\
p
\end{array}\right]
$$

which on summing over i from 1 to $N-p$ gives

$$
\sum_{i=1}^{N-p} \sum_{l=0}^{i} q^{(i-l)(p-l)}\left[\begin{array}{c}
N-i \tag{27}\\
p-l
\end{array}\right]\left[\begin{array}{l}
i \\
l
\end{array}\right]=(N-p)\left[\begin{array}{l}
N \\
p
\end{array}\right]
$$

Notice that (22) can be rewritten as

$$
\begin{equation*}
\sum_{i=1}^{N-p+1}\left[\sum_{l=0}^{p-1} e_{l}\left(x_{1}, x_{2}, \ldots, x_{i+l-1}\right) e_{p-l-1}\left(x_{i+l+1}, \ldots, x_{N}\right)-e_{p-1}(x)\right]=0 \tag{28}
\end{equation*}
$$

suggesting the following identitity:

$$
\begin{equation*}
e_{p}(x)=\sum_{l=0}^{p} e_{l}\left(x_{1}, x_{2}, \ldots, x_{i+l-1}\right) e_{p-l}\left(x_{i+l+1}, \ldots, x_{N}\right) \tag{29}
\end{equation*}
$$

valid for $N-p \geqslant i \geqslant 1$. This gives rise to the following q-binomial identity:

$$
\sum_{l=0}^{i} q^{(i-l)(p-l)}\left[\begin{array}{c}
N-i \tag{30}\\
p-l
\end{array}\right]\left[\begin{array}{l}
i \\
l
\end{array}\right]=\left[\begin{array}{l}
N \\
p
\end{array}\right] \quad N-p \geqslant i \geqslant 1
$$

From (18) we can derive more identities by differentiating with respect to x_{j}, summing over j and using (18) on the rhs of the relation thus obtained. Repeating this procedure one is led to

$$
\begin{equation*}
\sum_{i, j=1 ; i_{1} \cdots>i_{r}}^{N} e_{p-r}^{\left(i_{1}, \ldots, i_{r}\right)}(x)=\binom{N-p+r}{r} e_{p-r}(x) . \tag{31}
\end{equation*}
$$

Setting $x_{1}=1, x_{2}=q, \ldots, x_{N}=q^{N-1}$, as before, one obtains a whole series of q-binomial identities.

The next in the hiearchy of identities corresponds to $\alpha=2$. In this case (16) reads

$$
\begin{align*}
& \sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} E\left(x, t_{1}\right) \frac{\partial}{\partial x_{i}} E\left(x, t_{2}\right)=N t_{1} t_{2} E\left(x, t_{1}\right) E\left(x, t_{2}\right)+t_{1} t_{2}\left[\frac{t_{1}^{2}}{t_{2}-t_{1}} \frac{\partial}{\partial t_{1}}+\frac{t_{2}^{2}}{t_{1}-t_{2}} \frac{\partial}{\partial t_{2}}\right] \\
& \times E\left(x, t_{1}\right) E\left(x, t_{2}\right) . \tag{32}
\end{align*}
$$

On substituting from (6) and equating like powers of t_{1} and t_{2} on both sides one obtains
$\sum_{i=1}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x)=(N-p+1) e_{p-1}(x) e_{q-1}(x)-\sum_{l=0}^{q-2}(p+q-2-2 l) e_{p+q-2-l}(x) e_{l}(x)$
which is the desired result valid for $p \geqslant q \geqslant 2$.

For the case $\alpha=3$, (16) gives

$$
\begin{align*}
\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} E\left(x, t_{1}\right) & \frac{\partial}{\partial x_{i}} E\left(x, t_{2}\right) \frac{\partial}{\partial x_{i}} E\left(x, t_{3}\right)=N t_{1} t_{2} t_{3} E\left(x, t_{1}\right) E\left(x, t_{2}\right) E\left(x, t_{3}\right)-t_{1} t_{2} t_{3} \\
& \times\left[\frac{t_{1}^{3}}{\left(t_{3}-t_{1}\right)\left(t_{2}-t_{1}\right)} \frac{\partial}{\partial t_{1}}+\frac{t_{2}^{3}}{\left(t_{3}-t_{2}\right)\left(t_{1}-t_{2}\right)} \frac{\partial}{\partial t_{2}}\right. \\
& \left.+\frac{t_{3}^{3}}{\left(t_{1}-t_{3}\right)\left(t_{2}-t_{3}\right)} \frac{\partial}{\partial t_{3}}\right] E\left(x, t_{1}\right) E\left(x, t_{2}\right) E\left(x, t_{3}\right) \tag{34}
\end{align*}
$$

which, in turn, yields

$$
\begin{gather*}
\sum_{i=1}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) e_{r-1}^{(i)}(x)=\sum_{m=1}^{r-3} \sum_{l=1}^{m} l e_{l} e_{m+q-l} e_{p+r-m-3}-\sum_{m=0}^{r-1} \sum_{l=1}^{q-3} l e_{l} e_{m+p+q-l-2} e_{r-m-1} \\
- \\
\quad \sum_{m=0}^{r-1} \sum_{l=0}^{m}(m+q-l-2) e_{l} e_{m+q-l-2} e_{p+r-m-1} \tag{35}\\
+\sum_{m=0}^{r-1} \sum_{l=0}^{q-1}(m+p+q-l-2) e_{l} e_{m+p+q-l-2} e_{r-m-1}
\end{gather*}
$$

valid for $p \geqslant q \geqslant r$. Again, as before, we can derive identities for q-binomial coefficients by setting $x_{i}=q^{i-1}$ in (33) and (35).

To conclude, we have developed a systematic procedure for expressing sums of products of elementary symmetric functions of the form

$$
\begin{equation*}
\sum_{i}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) \cdots e_{w-1}^{(i)}(x) \tag{36}
\end{equation*}
$$

in terms of elementary symmetric functions in the full set of variables x_{1}, \ldots, x_{N}. All such relations are derivable from (16), which constitutes the central result of this letter. These relations, in turn, are shown to lead to a hierarchy of identities involving q-binomial coefficients.

SC wishes to thank Professor A I Solomon and Professor K Penson for discussions and is particularly grateful to Professor J Katriel for many valuable suggestions.

References

[1] Calogero F 1969 J. Math. Phys. 102191
[2] Calogero F 1969 J. Math. Phys. 102197
[3] Sutherland B 1971 J. Math. Phys. 12246 Sutherland B 1971 J. Math. Phys. 12251
[4] Sutherland B 1971 Phys. Rev. A 42019 Sutherland B 1972 Phys. Rev. A 51372
[5] Perelomov A M 1971 Theor. Math. Phys. 6263
[6] Rühl W and Turbiner A 1995 Mod. Phys. Lett. A 102213
[7] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Clarendon)
[8] Jack H 1970 Proc. R. Soc. Edinburgh B 691
[9] Chaturvedi S 1998 Mod. Phys. Lett. A 13715
[10] See for instance Cigler J 1979 Monatsh. Math. 8887

