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Abstract. A systematic procedure for generating certain identities involving elementary
symmetric functions is proposed. These identities, as particular cases, lead to a hierarchy of
identities for q-binomial coefficients.

Ever since the advent of Calogero–Sutherland models [1–4] there has been a considerable
interest in finding homogeneous symmetric polynomials Pk(x); x ≡ (x1, x2, . . . , xN) of degree
k which satisfy the generalized Laplace equation[ N∑

i=1

∂2

∂x2
i

+
2

α

∑
i<j

1

(xi − xj )

(
∂

∂xi

− ∂

∂xj

)]
Pk(x) = 0. (1)

Since one is seeking solutions to (1) which are symmetric functions of (x1, x2, . . . , xN) it
appears natural to change variables from (x1, x2, . . .) to a set of variables which are symmetric
functions of (x1, x2, . . .) and rewrite the generalized Laplace equation in terms of these
variables. Two sets of such variables that have been considered in the literature [5, 6] are

• power sums:

pr(x) =
∑

i

xr
i r = 1, . . . , N (2)

• elementary symmetric functions:

er(x) =
∑

i1<i2···<ir

xi1xi2 . . . xir i1, . . . , ir = 1, . . . , N r = 1, . . . , N. (3)

(Here, for symmetric functions, we follow the nomenclature and notation of [7].) Explicit
expressions for the generalized Laplace equation in terms of these variables may be found in [5]
and [6] respectively. The next step consists in finding polynomial solutions of the equation
thus obtained. (It may be noted here that a more efficient way of constructing the symmetric
polynomial solutions of (1) based on expanding Pk(x) in terms of Jack polynomials [8] may
be found in [9].)

In changing variables from (x1, . . . , xN) to (e1(x), . . . , eN(x)) in the generalized Laplace
equation, in the intermediate stages, one needs to express the symmetric function∑

i

e
(i)
p−1(x)e

(i)
q−1(x) (4)
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in terms of er(x). Here e(i)
p (x) denotes the pth elementary symmetric function formed from

(x1, . . . , xN) omitting xi . The purpose of this letter is to provide a derivation of the expression
of the symmetric function in (4) in terms of the elementary symmetric functions in the full
set of variables (x1, . . . , xN). The procedure adopted for deriving this result permits easy
extension to symmetric functions such as

N∑
i=1

e
(i)
p−1(x)e

(i)
q−1(x)e

(i)
r−1(x) (5)

and so on. Further, on setting x1 = 1, x2 = q, . . . , xN = qN−1, one is led to a series of
interesting identities for q-binomial coefficients.

To obtain the desired results, it proves convenient to work with the generating function
for the elementary symmetric functions

E(x, t) =
N∑

r=0

t rer (x) (6)

=
N∏

i=1

(1 + xit). (7)

From the product structure of E(x, t) it follows that

ep(x1, x2, . . . , xN) =
p∑

l=0

el(x1, x2, . . . , xi)ep−l(xi+1, . . . , xN). (8)

Differentiating log E(x, t) with respect to t gives

∂

∂t
log E(x, t) =

N∑
i=1

xi

(1 + xit)
. (9)

Further, differentiating log E(x, t) with respect to xi one obtains

∂

∂xi

log E(x, t) = t

(1 + xit)
(10)

and hence
M∏

α=1

[
∂

∂xi

log E(x, tα)

]
=

( M∏
α=1

tα

)( M∏
α=1

1

1 + xitα

)
. (11)

Our aim now is to express the rhs of (11) in terms of derivatives of log E(x, t) with respect to t .
To this end, we notice that the second product on the rhs of (11) can be expressed as follows:( M∏

α=1

1

1 + xitα

)
= 1 +

M∑
α

fα(t)
xi

1 + xitα
(12)

where fα(t) satisfy the following set of linear equations:∑
α

fα = −e1(t)∑
α

fαe
(α)
1 (t) = −e2(t)∑

α

fαe
(α)
2 (t) = −e3(t)

...∑
α

fαe
(α)
M−1 = −eM(t).

(13)
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The solution of this set of linear equations turns out to be remarkably simple:

fα(t) = (−tα)M
∏
β �=α

1

(tβ − tα)
. (14)

Using (12) in (11), summing over i, and using (9) we obtain

∑
i

M∏
α=1

[
∂

∂xi

log E(x, tα)

]
=

( M∏
α=1

tα

)[
N +

M∑
α=1

fα

∂

∂tα
log E(x, tα)

]
(15)

i.e.
∑

i

M∏
α=1

[
∂

∂xi

E(x, tα)

]
= N

M∏
α=1

tαE(x, tα) +

( M∏
α=1

tα

) M∑
α=1

fα

∂

∂tα

M∏
β=1

E(x, tβ) (16)

where the f are given by (14). This relation is a rich source of a hierarchy of identities involving
elementary symmetric functions and hence that for q-binomial and binomial coefficients as
can be seen from the following illustrative examples.

Consider first the simplest of the hierarchy of identities implied by (16) obtained by setting
α = 1. In this case, (16) yields

N∑
i=1

∂

∂xi

E(x, t) = NtE(x, t) − t2 ∂

∂t
E(x, t). (17)

On substituting for E(x, t) from (6) and equating like powers of t on both sides one obtains
N∑

i=1

e
(i)
p−1(x) = (N − p + 1)ep−1(x). (18)

Now, from (8) it follows that

e
(i)
p−1(x) =

p∑
l=1

el−1(x1, x2, . . . , xi−1)ep−l(xi+1, . . . , xN) (19)

and hence
N∑

i=1

e
(i)
p−1(x) =

p∑
l=1

N∑
i=1

el−1(x1, x2, . . . , xi−1)ep−l(xi+1, . . . , xN). (20)

Using the fact that el(x1, . . . , xi) is nonzero only if i � l, we can rewrite (20), after some
rearrangement, as

N∑
i=1

e
(i)
p−1(x) =

N−p+1∑
i=1

p−1∑
l=0

el(x1, x2, . . . , xi+l−1)ep−l−1(xi+l+1, . . . , xN). (21)

On using this result in (18) we obtain
N−p+1∑

i=1

p−1∑
l=0

el(x1, x2, . . . , xi+l−1)ep−l−1(xi+l+1, . . . , xN) = (N − p + 1)ep−1(x). (22)

Setting x1 = 1, x2 = q, . . . , xN = qN−1 and using

ep(1, q, . . . , qN−1) = qp(p−1)/2

[
N

p

]
(23)

where [
N

p

]
≡ (1 − qN)(1 − qN−1) · · · (1 − qN−p+1)

(1 − q)(1 − q2) · · · (1 − qp)
(24)
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denotes the q-binomial coefficient [7, 10], we obtain, on changing p − 1 to p, the following
q-binomial identity:

N−p∑
i=1

p∑
l=0

qil

[
N − p − i + l

l

] [
i − 1 + p − l

p − l

]
= (N − p)

[
N

p

]
. (25)

This identity has a totally different structure as compared with that obtained from (8). For
N − p � i � 1 (8) yields

i∑
l=0

q(i−l)(p−l)

[
N − i

p − l

] [
i

l

]
=

[
N

p

]
(26)

which on summing over i from 1 to N − p gives

N−p∑
i=1

i∑
l=0

q(i−l)(p−l)

[
N − i

p − l

] [
i

l

]
= (N − p)

[
N

p

]
. (27)

Notice that (22) can be rewritten as

N−p+1∑
i=1

[ p−1∑
l=0

el(x1, x2, . . . , xi+l−1)ep−l−1(xi+l+1, . . . , xN) − ep−1(x)

]
= 0 (28)

suggesting the following identitity:

ep(x) =
p∑

l=0

el(x1, x2, . . . , xi+l−1)ep−l(xi+l+1, . . . , xN) (29)

valid for N − p � i � 1. This gives rise to the following q-binomial identity:

i∑
l=0

q(i−l)(p−l)

[
N − i

p − l

] [
i

l

]
=

[
N

p

]
N − p � i � 1. (30)

From (18) we can derive more identities by differentiating with respect to xj , summing
over j and using (18) on the rhs of the relation thus obtained. Repeating this procedure one is
led to

N∑
i,j=1;i1···>ir

e
(i1,...,ir )
p−r (x) =

(
N − p + r

r

)
ep−r (x). (31)

Setting x1 = 1, x2 = q, . . . , xN = qN−1, as before, one obtains a whole series of q-binomial
identities.

The next in the hiearchy of identities corresponds to α = 2. In this case (16) reads

N∑
i=1

∂

∂xi

E(x, t1)
∂

∂xi

E(x, t2) = Nt1t2E(x, t1)E(x, t2) + t1t2

[
t2
1

t2 − t1

∂

∂t1
+

t2
2

t1 − t2

∂

∂t2

]

×E(x, t1)E(x, t2). (32)

On substituting from (6) and equating like powers of t1 and t2 on both sides one obtains

N∑
i=1

e
(i)
p−1(x)e

(i)
q−1(x) = (N − p + 1)ep−1(x)eq−1(x) −

q−2∑
l=0

(p + q − 2 − 2l)ep+q−2−l(x)el(x)

(33)

which is the desired result valid for p � q � 2.



Letter to the Editor L255

For the case α = 3, (16) gives

N∑
i=1

∂

∂xi

E(x, t1)
∂

∂xi

E(x, t2)
∂

∂xi

E(x, t3) = Nt1t2t3E(x, t1)E(x, t2)E(x, t3) − t1t2t3

×
[

t3
1

(t3 − t1)(t2 − t1)

∂

∂t1
+

t3
2

(t3 − t2)(t1 − t2)

∂

∂t2

+
t3
3

(t1 − t3)(t2 − t3)

∂

∂t3

]
E(x, t1)E(x, t2)E(x, t3) (34)

which, in turn, yields

N∑
i=1

e
(i)
p−1(x)e

(i)
q−1(x)e

(i)
r−1(x) =

r−3∑
m=1

m∑
l=1

lelem+q−lep+r−m−3 −
r−1∑
m=0

q−3∑
l=1

lelem+p+q−l−2er−m−1

−
r−1∑
m=0

m∑
l=0

(m + q − l − 2)elem+q−l−2ep+r−m−1

+
r−1∑
m=0

q−1∑
l=0

(m + p + q − l − 2)elem+p+q−l−2er−m−1 (35)

valid for p � q � r . Again, as before, we can derive identities for q-binomial coefficients by
setting xi = qi−1 in (33) and (35).

To conclude, we have developed a systematic procedure for expressing sums of products
of elementary symmetric functions of the form

N∑
i

e
(i)
p−1(x)e

(i)
q−1(x) · · · e(i)

w−1(x) (36)

in terms of elementary symmetric functions in the full set of variables x1, . . . , xN . All such
relations are derivable from (16), which constitutes the central result of this letter. These
relations, in turn, are shown to lead to a hierarchy of identities involvingq-binomial coefficients.

SC wishes to thank Professor A I Solomon and Professor K Penson for discussions and is
particularly grateful to Professor J Katriel for many valuable suggestions.
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